Sunday, May 31, 2009

RED BLOOD CELLS

Red blood cells are the most common type of blood cell and the vertebrate body's principal means of delivering oxygen to the body tissues via the blood. They take up oxygen in the lungs or gills and release it while squeezing through the body's capillaries. The cells are filled with hemoglobin, a biomolecule that can bind to oxygen.

The blood's red color is due to the color of hemoglobin. In humans, red blood cells develop in the bone marrow and live for about 120 days; they take the form of flexible biconcave disks that lack a cell nucleus and organelles and they cannot synthesize protein. Red blood cells are also known as RBCs, red blood corpuscles (an archaic term), haematids or erythrocytes (from Greek erythros for "red" and kytos for "hollow", with cyte translated as "cell" in modern usage). The capitalized term Red Blood Cells is the proper name in the US for erythrocytes in storage solution used in transfusion medicine. Erythrocytes consist mainly of hemoglobin, a complex metalloprotein containing heme groups whose iron atoms temporarily link to oxygen molecules (O2) in the lungs or gills and release them throughout the body. Oxygen can easily diffuse through the red blood cell's cell membrane. Hemoglobin in the erythrocytes also carries some of the waste product carbon dioxide back from the tissues; most of the carbon dioxide is however transported as bicarbonate dissolved in the blood plasma. Myoglobin, a compound related to hemoglobin, acts to store oxygen in muscle cells.

The color of erythrocytes is due to the heme group of hemoglobin. The blood plasma alone is straw-colored, but the red blood cells change color depending on the state of the hemoglobin: when combined with oxygen the resulting oxyhemoglobin is scarlet, and when oxygen has been released the resulting deoxyhemoglobin is darker, appearing bluish through the vessel wall and skin. Pulse oximetry takes advantage of this color change to directly measure the arterial blood oxygen saturation using colorimetric techniques.

The sequestration of oxygen carrying proteins inside specialized cells (rather than having them dissolved in body fluid) was an important step in the evolution of vertebrates; it allows for less viscous blood, higher concentrations of oxygen, and better diffusion of oxygen from the blood to the tissues. The size of erythrocytes varies widely among vertebrate species; erythrocyte width is on average about 25% larger than capillary diameter and it has been hypothesized that this improves the oxygen transfer from erythrocytes to tissues. Mammalian erythrocytes have nuclei during early phases of development, but extrude them as they mature in order to provide more space for hemoglobin. Mammalian erythrocytes also lose their other organelles such as their mitochondria. As a result, the cells use none of the oxygen they transport; instead they produce the energy carrier ATP by fermentation, via glycolysis of glucose followed by lactic acid production. Furthermore, red cells do not have an insulin receptor and thus their glucose uptake is not regulated by insulin. Because of the lack of nuclei and organelles, mature red blood cells do not contain DNA and cannot synthesize any RNA, and consequently they cannot divide or repair themselves.

No comments:

Post a Comment