Sunday, May 31, 2009

IRON

Pure iron is a metal, but is rarely found in this form on the surface of the earth, because it oxidizes readily in the presence of oxygen and moisture. In order to obtain metallic iron, oxygen must be removed from naturally occurring ores by chemical reduction – mainly of the iron ore hematite (Fe2O3) by carbon at high temperature. The properties of iron can be modified by alloying it with various other metals (and some non-metals, notably carbon and silicon) to form steels.

Nuclei of iron atoms have some of the highest binding energies per nucleon, surpassed only by the nickel isotope 62Ni. The universally most abundant of the highly stable nuclides is, however, 56Fe. This is formed by nuclear fusion in stars. Although a further tiny energy gain could be extracted by synthesizing 62Ni, conditions in stars are unsuitable for this process to be favoured. Elemental distribution on Earth greatly favors iron over nickel, and also presumably in supernova element production.

Iron (as Fe2+, ferrous ion) is a necessary trace element used by almost all living organisms. The only exceptions are several organisms that live in iron-poor environments and have evolved to use different elements in their metabolic processes, such as manganese instead of iron for catalysis, or hemocyanin instead of hemoglobin. Iron-containing enzymes, usually containing heme prosthetic groups, participate in catalysis of oxidation reactions in biology, and in transport of a number of soluble gases. See hemoglobin, cytochrome, and catalase.

As molten iron cools down it crystallizes at 1538 °C into its delta allotrope, which has a body-centered cubic (BCC) crystal structure. As it cools further its crystal structure changes to face-centered cubic (FCC) at 1394 °C, when it is known as gamma-iron, or austenite. At 912 °C the crystal structure again becomes BCC as alpha-iron, or ferrite, is formed, and at 770 °C (the Curie point, Tc) the iron becomes magnetic. As the iron passes through the Curie temperature there is no change in crystalline structure, but there is a change in "domain structure", where each domain contains iron atoms with a particular electronic spin. In unmagnetized iron, all the electronic spins of the atoms within one domain are in the same direction; however, in neighbouring domains they point in various directions and thus cancel out. In magnetized iron, the electronic spins of all the domains are all aligned, so that the magnetic effects of neighbouring domains reinforce each other. Although each domain contains billions of atoms, they are very small, about one thousandth of a centimetre across.

No comments:

Post a Comment