Sunday, May 31, 2009

CIRCLE

A circle is a simple shape of Euclidean geometry consisting of those points in a plane which are the same distance from a given point called the centre. The common distance of the points of a circle from its center is called its radius. A diameter is a line segment whose endpoints lie on the circle and which passes through the centre of the circle. The length of a diameter is twice the length of the radius. A circle is never a polygon because it has no sides or vertices.

Circles are simple closed curves which divide the plane into two regions, an interior and an exterior. In everyday use the term "circle" may be used interchangeably to refer to either the boundary of the figure (known as the perimeter) or to the whole figure including its interior, but in strict technical usage "circle" refers to the perimeter while the interior of the circle is called a disk. The circumference of a circle is the perimeter of the circle (especially when referring to its length).A circle is a special ellipse in which the two foci are coincident. Circles are conic sections attained when a right circular cone is intersected with a plane perpendicular to the axis of the cone.

A chord of a circle is a line segment whose two endpoints lie on the circle. The diameter, passing through the circle's centre, is the largest chord in a circle. A tangent to a circle is a straight line that touches the circle at a single point. A secant is an extended chord: a straight line cutting the circle at two points.An arc of a circle is any connected part of the circle's circumference. A sector is a region bounded by two radii and an arc lying between the radii, and a segment is a region bounded by a chord and an arc lying between the chord's endpoints.

The circle has been known since before the beginning of recorded history. It is the basis for the wheel, which, with related inventions such as gears, makes much of modern civilization possible. In mathematics, the study of the circle has helped inspire the development of geometry and calculus.Early science, particularly geometry and Astrology and astronomy, was connected to the divine for most medieval scholars, and many believed that there was something intrinsically "divine" or "perfect" that could be found in circles. An inscribed angle (examples are the blue and green angles in the figure) is exactly half the corresponding central angle (red). Hence, all inscribed angles that subtend the same arc (pink) are equal. Angles inscribed on the arc (brown) are supplementary. In particular, every inscribed angle that subtends a diameter is a right angle (since the central angle is 180 degrees).

No comments:

Post a Comment